viernes, 20 de septiembre de 2013

NORMAS 568a Y 568b


El cableado estructurado está diseñado para usarse en cualquier cosa, en cualquier lugar, y en cualquier momento. Elimina la necesidad de seguir las reglas de un proveedor en particular, concernientes a tipos de cable, conectores, distancias, o topologías. Permite instalar una sola vez el cableado, y después adaptarlo a cualquier aplicación, desde telefonía, hasta redes locales y posterior mente escalar para una conexión a internet.

La norma ANSI/TIA/EIA-568-A, "Norma para construcción comercial de cableado de telecomunicaciones".


  • El cableado vertebral deberá seguir la topología estrella convencional.
  • Cada interconexión horizontal en un cuarto de telecomunicaciones está cableada a una interconexión principal o a una interconexión intermedia y de ahí a una interconexión principal con la siguiente excepción: Si se anticipan requerimientos para una topología de red bus o anillo, entonces se permite el cableado de conexiones directas entre los cuartos de telecomunicaciones.
  • No debe haber más de dos niveles jerárquicos de interconexiones en el cableado vertebral (para limitar la degradación de la señal debido a los sistemas pasivos y para simplificar los movimientos, aumentos o cambios.
  • Las instalaciones que tienen un gran número de edificios o que cubren una gran extensión geográfica pueden elegir subdividir la instalación completa en áreas menores dentro del alcance de la norma EIA/TIA 568­A. En este caso, se excederá el número total de niveles de interconexiones.
  • Las conexiones entre dos cuartos de telecomunicaciones pasarán a través de tres o menos interconexiones.
  • Sólo se debe pasar por una conexión cruzada para llegar a la conexión cruzada principal.
  • En ciertas instalaciones, la conexión cruzada del vertebral (conexión cruzada principal) bastará para cubrir los requerimientos de conexiones cruzadas.
  • Las conexiones cruzadas del vertebral pueden estar ubicadas en los cuartos de telecomunicaciones, los cuartos de equipos, o las instalaciones de entrada.
  • No se permiten empalmes como parte del vertebral.

Ejemplo 568A


Norma completa (ingles)

NORMA 568 B
SE COMPONE DE  3 ESTANDARES.



ANSI/TIA/EIA-568-B.1
TELECOMUNICACIONES 
edificio comercial estándar de cables

ANSI/TIA/EIA-568-B.2
100 OHM TWISTED cableado de par
NORMAS
columna vertebral
Conexión de Hardware
Cables y Puentes
horizontal
varado

ANSI/TIA/EIA-568-B.3 
OPTICAL FIBER STANDARDS
Optical Fiber Cabling Components

EJEMPLO.


Norma completa (ingles)



DIAGRAMA DE MEDIOS DE TRANSMISION


viernes, 13 de septiembre de 2013

MEDIOS DE TRANSMISION.

 

El medio de transmisión constituye el soporte físico a través del cual emisor y receptor pueden comunicarse en un sistema de transmisión de datos. Distinguimos dos tipos de medios: guiados y no guiados. En ambos casos la transmisión se realiza por medio de ondas electromagnéticas. Los medios guiados conducen (guían) las ondas a través de un camino físico, ejemplos de estos medios son el cable coaxial, la fibra óptica y el par trenzado. Los medios no guiados proporcionan un soporte para que las ondas se transmitan, pero no las dirigen; como ejemplo de ellos tenemos el aire y el vacío.

La naturaleza del medio junto con la de la señal que se transmite a través de él constituyen los factores determinantes de las características y la calidad de la transmisión. En el caso de medios guiados es el propio medio el que determina el que determina principalmente las limitaciones de la transmisión: velocidad de transmisión de los datos, ancho de banda que puede soportar y espaciado entre repetidores. Sin embargo, al utilizar medios no guiados resulta más determinante en la transmisión el espectro de frecuencia de la señal producida por la antena que el propio medio de transmisión. 



Guiados

Cable coaxial

El cable coaxial consta de un alambre de cobre duro en su parte central, es decir, que constituye el núcleo, el cual se encuentra rodeado por un material aislante. Este material aislante está rodeado por un conductor cilíndrico que frecuentemente se presenta como una malla de tejido trenzado. El conductor externo está cubierto por una capa de plástico protector.
La construcción del cable coaxial produce una buena combinación y un gran ancho de banda y una excelente inmunidad al ruido. El ancho de banda que se puede obtener depende de la longitud del cable; para cables de 1km, por ejemplo, es factible obtener velocidades de datos de hasta 10Mbps, y en cables de longitudes menores, es posible obtener velocidades superiores. Se pueden utilizar cables con mayor longitud, pero se obtienen velocidades muy bajas. Los cables coaxiales se emplean ampliamente en redes de área local y para transmisiones de largas distancia del sistema telefónico.



Cable coaxial con dieléctrico de aire: se diferencian dos tipos, en unos se utiliza

de soporte y de separación entre conductores una espiral de polietileno y en otros existen unos canales o perforaciones a lo largo del cable de modo que el polietileno sea el mínimo imprescindible para la sujeción del conductor central.

Son cables que presentan unas atenuaciones muy bajas




Cable dieléctrico de polietileno celular o esponjoso: presenta más consistencia que el anterior pero también tiene unas pérdidas más elevadas.

Cable coaxial con dieléctricos de polietileno macizo: de mayores atenuaciones que el anterior y se aconseja solamente para conexiones cortas (10-15 m aproximadamente).
.
 
Par trenzado.


Este consiste en dos alambres de cobre aislados, en general de 1mm de espesor. Los alambres se entrelazan en forma helicoidal, como en una molécula de DNA. La forma trenzada del cable se utiliza para reducir la interferencia eléctrica con respecto a los pares cercanos que se encuentran a su alrededor. Los pares trenzados se pueden utilizar tanto para transmisión analógica como digital, y su ancho de banda depende del calibre del alambre y de la distancia que recorre; en muchos casos pueden obtenerse transmisiones de varios megabits, en distancias de pocos kilómetros. Debido a su adecuado comportamiento y bajo costo, los pares trenzados se utilizan ampliamente y es probable que se presencia permanezca por muchos años.

  • Par 1: Blanco-Azul/Azul
  • Par 2: Blanco-Naranja/Naranja
  • Par 3: Blanco-Verde/Verde
  • Par 4: Blanco-Marrón/Marrón

UTP es como se denominan a los cables de par trenzado no apantallados, son los más simples, no tienen ningún tipo de pantalla conductora. Su impedancia es de 100 onmhios, y es muy sensible a interferencias. Los pares están recubiertos de una malla de teflón que no es conductora. Este cable es bastante flexible.

STP es la denominación de los cables de par trenzado apantallados individualmente, cada par se envuelve en una malla conductora y otra general que recubre a todos los pares. Poseen gran inmunidad al ruido, pero una rigidez máxima.

En los cables FTP los pares se recubren de una malla conductora global en forma trenzada. De esta forma mejora la protección frente a interferencias, teniendo una rigidez intermedia.





Fibra Optica


La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.

Fibras multimodo. El término multimodo indica que pueden ser guiados muchos modos o rayos luminosos, cada uno de los cuales sigue un camino diferente dentro de la fibra óptica. Este efecto hace que su ancho de banda sea inferior al de las fibras monomodo. Por el contrario los dispositivos utilizados con las multimodo tienen un coste inferior (LED). Este tipo de fibras son las preferidas para comunicaciones en pequeñas distancias, hasta 10 Km.



Fibras monomodo. El diámetro del núcleo de la fibra es muy pequeño y sólo permite la propagación de un único modo o rayo (fundamental), el cual se propaga directamente sin reflexión. Este efecto causa que su ancho de banda sea muy elevado, por lo que su utilización se suele reservar a grandes distancias, superiores a 10 Km, junto con dispositivos de elevado coste (LÁSER).



No Guiados

Bluetooth

El nombre procede del rey danés y noruego Harald Blåtand cuya traducción al inglés sería Harold Bluetooth, conocido por buen comunicador y por unificar las tribus noruegas, suecas y danesas. La traducción textual al idioma español es "diente azul".   

La tecnología inalámbrica Bluetooth es una tecnología de ondas de radio de corto alcance (2.4 gigahertzios de frecuencia) cuyo objetivo es el simplificar las comunicaciones entre dispositivos informáticos, como ordenadores móviles, teléfonos móviles, otros dispositivos de mano y entre estos dispositivos e Internet. También pretende simplificar la sincronización de datos entre los dispositivos y otros ordenadores.

Clasificacion por alcance.

Clase Potencia máxima permitida Potencia máxima permitida Rango
(dBm) (mW) (aproximado)
Clase 1 100 mW 20 dBm ~100 metros

Clase 2 2.5 mW 4 dBm ~25 metros

Clase 3 1 mW 0 dBm ~1 metro 
  Clasificacion por ancho de banda 
Versión Ancho de banda
Versión 1.2 1 Mbit/s
Versión 2.0 + EDR 3 Mbit/s
UWB Bluetooth

(propuesto) 53 - 480 Mbit/s  Nueva Competencia del bluetoot wi-fi direct    Infrarojo. 

El uso de la luz infrarroja se puede considerar muy similar a la transmisión digital con microondas. El has infrarrojo puede ser producido por un láser o un LED.
Los dispositivos emisores y receptores deben ser ubicados “ala vista” uno del otro. Su velocidad de transmisión de hasta 100 Kbps puede ser soportadas a distancias hasta de 16 km. Reduciendo la distancia a 1.6 Km. Se puede alcanzar 1.5 Mbps.

se encuentran limitados por el espacio y los obstáculos. El hecho de que la longitud de onda de los rayos infrarrojos sea tan pequeña (850-900 nm), hace que no pueda propagarse de la misma forma en que lo hacen las señales de radio. 

Modo de operacion.

1) Peer to Peer o Ad Hoc: Es el tipo de configuración más sencilla, en el que dos o más estaciones se conectan directamente, de forma visible, formando una especie de anillo.
2) Modo Infraestructura: En este tipo de configuración, se añade un elemento llamado punto de acceso (más conocido como AP (Access Point)). Dicho elemento, permite formar redes de menor tamaño que serán interconectadas a través de él. En ocasiones, dependiendo del tipo de punto de acceso, las redes pueden ser de tipos distintos, siendo este dispositivo el encargado de realizar la conversión entre señales.

Wi-Fi

 Wi-Fi (siglas del inglés Wireless-Fidelity) (o Wi-fi, WiFi, Wifi, wifi) es un conjunto de estándares para redes inalámbricas basados en las especificaciones IEEE 802.11. Fue creado para ser utilizado en redes locales inalámbricas, sin embargo es frecuente que en la actualidad también se utilice para acceder a Internet.   Es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con Wi-Fi, tales como: un ordenador personal, una consola de videojuegos, un smartphone o un reproductor de audio digital, pueden conectarse a Internet a través de un punto de acceso de red inalámbrica. Dicho punto de acceso (o hotspot) tiene un alcance de unos 20 metros en interiores y al aire libre una distancia mayor. Pueden cubrir grandes áreas la superposición de múltiples puntos de acceso.

 

 Tipos y estandares wifi

IEEE 802.11 – Creado en 1997, fue el primero y ahora esta muerto, soportaba una velocidad máxima de conexión de 2 megabits por segundo, demasiado lento para la mayoría de las aplicaciones, este estándar dejo de utilizarse hace mas de una década y no es compatible con los dispositivos actuales.

IEEE 802.11a – Creado en 1999, esta versión funciona en la frecuencia de los 5 GHz esperando encontrar menos interferencia con dispositivos como teléfonos inalámbricos que usan la frecuencia de 2.4 GHz la velocidad máxima de conexión es de 54 megabits por segundo. El alcance es bastante limitado ya que los objetos bloquean fácilmente la frecuencia de los 5 GHz.

IEEE 802.11b – También fue creado en 1999, pero usando la frecuencia 2.4 GHz, la velocidad máxima de conexión es de 11 megabits por segundo, este estándar fue el causante de que la popularidad del WiFi se incrementara.

IEEE 802.11g – Se creo en el 2003 usando la banda de 2.4 GHz pero con una velocidad máxima de 54 megabits por segundo, este estándar fue adoptado ampliamente e incluso sigue siendo utilizado hasta la fecha ya que la velocidad sigue siendo adecuada para la mayoría de aplicaciones, sin olvidar que es mas barata.

IEEE 802.11n – Es el estándar mas reciente, lanzado en el 2009, funciona en ambas bandas 2.4 y 5 GHz y una velocidad máxima de hasta 600 megabits.

Laser

En 2006, científicos de la compañía Intel descubren la forma de trabajar con un chip láser a base de silicio abriendo las puertas para el desarrollo de redes de comunicación mucho más rápidas y eficientes.   El láser, palabra proviene de las siglas en inglés para “Light Amplification by the Stimulated Emission of Radiation”, permite comprender aquello en lo que consiste a través de su traducción al español, “amplificación de la luz por emisión estimulada de radiación”.    Microondas.  El medio de transmisión microondas consiste en el elemento que conecta físicamente las estaciones de trabajo a un servidor de red o a un telepuerto de radio y/o televisión, que no necesariamente tienen que estar cerca entre sí. El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las UHF (ultra-High Frequency, frecuencia ultra alta en español) (0.3 – 3 GHz), SHF (super-high Frequency, frecuencia súper alta) (3 – 30 GHz) y EHF (extrémy High Frequency, frecuencia extremadamente alta) (30 – 300 GHz).  Las transmisiones pueden ser desde el emisor al receptor a través de la red satelital o desde el emisor a la red satelital y esa misma red interconectada a un satélite espacial.Las principales frecuencias utilizadas en microondas se encuentran alrededor de los 10-15 GHz, 18, 23 y 26 GHz, las cuales son capaces de conectar dos localidades de hasta 24 kilómetros de distancia una de la otra. Los equipos de microondas que operan a frecuencias más bajas, entre 2-8GHz, puede transmitir a distancias de entre 30 y 45 kilómetros. La única limitante de estos enlaces es la curvatura de la Tierra, aunque con el uso de repetidores se puede extender su cobertura a miles de kilómetros.   
  
 
 


 


 

 

.